Miscellaneous Publication 92-1

Report on the Examination of Samples from Manitoba Energy and Mines

By J. Letendre (Monopros Limited)

Manitoba Energy and Mines Geological Services

Manitoba Energy and Mines Geological Services

Miscellaneous Publication 92-1

Report on the Examination of Samples from Manitoba Energy and Mines

By J. Letendre (Monopros Limited) Winnipeg, 1992

Energy and Mines

Geological Services

Hon. James E. Downey Minister

1

David Tomasson Deputy Minister W.D. McRitchie Director

This publication is available in large print, audiotape or braille on request

. 1

MONOPROS LIMITED

REPORT ON THE EXAMINATION OF SAMPLES FROM THE MANITOBA DEPARTMENT OF ENERGY AND MINES

MINERAL RESOURCES DIVISION GEOLOGICAL SERVICES BRANCH

> BY: J. Letendre December, 1989

Number of volumes: 1 Number of pages: 21

SUMMARY

Mineral concentrates from 117 samples collected by the Geological Services Branch of the Manitoba Department of Energy and Mines, Mineral Resources Division, were examined for kimberlitic indicator minerals and diamonds.

No diamonds were found and eleven grains with kimberlitic affinities, four picro-ilmenites, one chromite and six garnets were identified. The electron microprobe chemical analyses for the grains examined are appended.

All material will be returned to the Geological Services Branch.

CONTENTS

Summary		•		•		•	•	•	•	•	•		•	•	•	•			•	•	•	•			i
Contents		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		ii
Introduc	t	i	0	n								•			•				•	•					1
Preparat	i	0	n	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Method .																									
Results	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
Referenc	e	S																							9

LIST OF TABLES

Table	1	Sample numbers
Table	2	Results after microprobing
Table	3	Garnet data file: probe results
Table	4	Ilmenite data file: probe results
Table	5	Chromite data file: probe results
Table	6	Other minerals data file:
		probe results

LIST OF FIGURES

Figure	1	Location of Sections
Figure	2	Conawapa Section
Figure	3	Henday Section
Figure	4	Limestone Section
Figure	5	Sundance Section

INTRODUCTION

The Manitoba Department of Energy and Mines, Mineral Geological Services Resources Division, Branch has sediment samples from collected a number of four the Nelson River (Figs. 1 and 2). sections on Two kilogram splits as well as the -2.0+0.25mm portion of а further 600 grams split were made available for m till samples by the Geological Services Branch most for examination for kimberlitic indicator minerals and diamonds. It was agreed by the Geological Services Branch that the samples would be washed, screened, dried the -2.0+0.3mm size fraction separated and using bromoform (specific gravity 2.9). The heavy mineral concentrates would then be optically sorted and the selected grains could be further investigated by electron microprobe, provided that all probed grains were returned and a copy of all the results was submitted together with details of the analysis carried out.

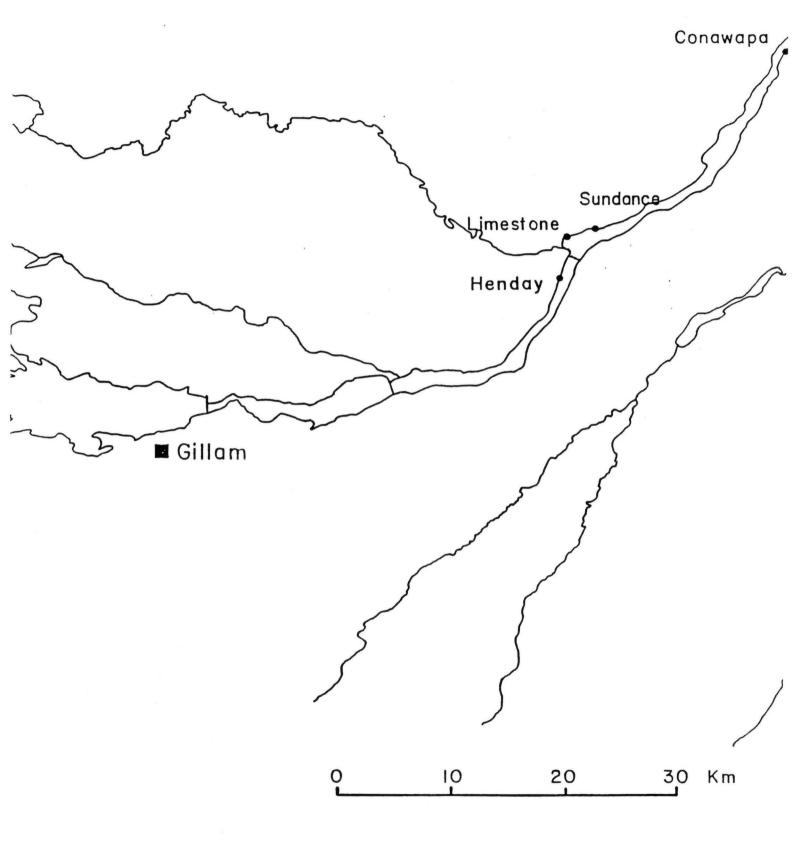
The till samples are very fine grained as over 70% of the material is finer than 300 microns. They were sent from the Geological Services Branch at Winnipeg in April 1989 and were transported to Thunder Bay by road.

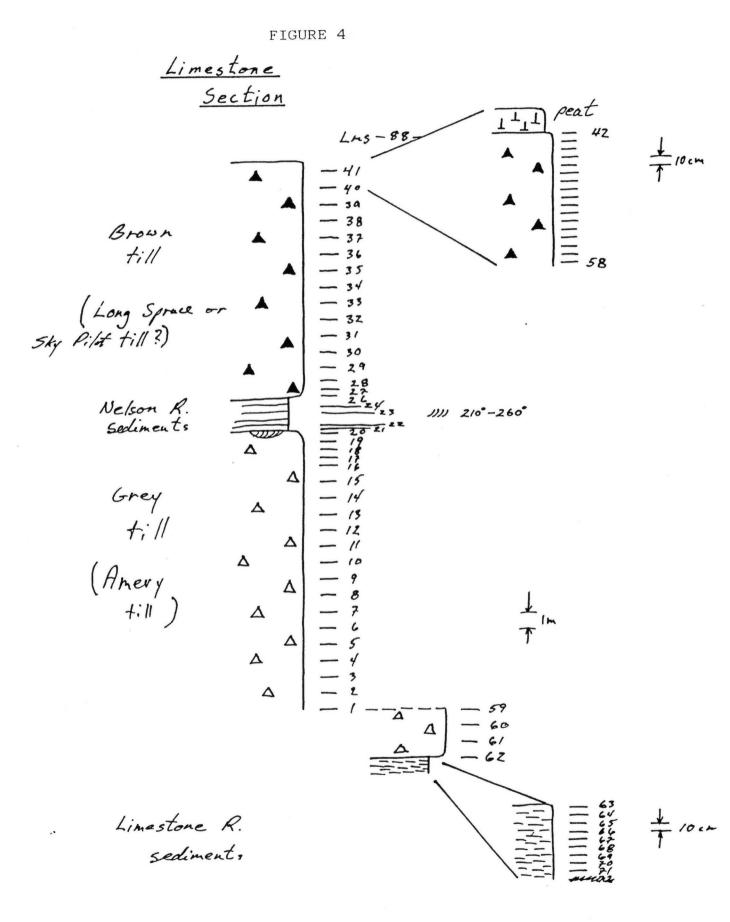
PREPARATION

The sample bags were checked against the sample listings supplied by the Geological Services Branch and any discrepancies were noted (see Table 1).

individual two kilogram samples consisting The of untreated till material were prepared by Monopros employees for sorting first by manual desliming, an operation which required much care in order not to loose any of the +300 micron fraction. The remaining coarse material was then screened into +2.0mm; -2.0+1.0mm; -1.0+0.5 mm; -0.5+0.3mm and -0.3mm fractions. The fractions were obtained by using 20 centimetre brass Tyler screens which were meticulously cleaned between samples. The +2.0mm and the -0.3mm fractions will be returned to the Geological Services Branch in Winnipeg along with the heavy mineral concentrates.

The -2.0+0.25mm material remaining after desliming of 600 gram samples, mostly of till, by Dominique Pare under contract with the Geological Services Branch, were screened as above using 7.5 centimetre brass Tyler screens which were also meticulously cleaned between samples. Notice that 18 samples are represented only by




FIGURE 2 <u>Conawapa</u> <u>Section</u>

		Con - 88-		
Tyrrell Sea Silt Tyrrell Sea gravel		< 8 9	T	1 m
Brown till		22 23		
sheared sand Brown till Sheared sand		- 2 25 26 27 28		
Grey till				
		-32 -33 -34) 2/ 20
Nonglacial sectiments		-35 -17 -16		- 19
Gney till		- 15 - 14		—18
	Slumped		•	
Grey till with silt		- 13 - 12 - 11 - 10	136°- 145°	m

<u>Henday</u> Section + 1m Holocene Sand & gravel 46 Δ 44 Boulder 42 Grey till Δ 40 ~ 200° (Long Spruce till) 3B Δ 36 Δ 34 32 30 Δ 24 ZZ Δ 20 **(B** Nelson 16 River Seds. In 14 12 1 10 8 6 4 Δ Grey till Δ (Amery till) Δ Δ

Covered

1450

Sundance Section Holocene saud + gravel 24 23 22 Δ Δ $\begin{array}{c}
-22 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27 \\
-27$ Grey till (Amery fill) Δ Δ Δ Δ Δ Δ paleosol -> Sandy grey Sundance covered £ 245°

/m

the 600 gram split. The different fractions from both the 2.0 and 0.6 kilogram splits were then combined prior to separation of the heavy minerals by the heavy liquid method at the DeBeers Research Laboratories in Kimberley. Bromoform was used, with a specific gravity of 2.9. This final preparation of the samples took 40 hours to accomplish but a 99% weight reduction was realized.

METHOD

Sorting of the heavy mineral concentrates was performed by trained microscopists with assistants to carry out sample preparation, using Wild M3 and M5 stereo microscopes. All samples were examined for the presence of possible kimberlitic indicator minerals and diamonds. Kimberlitic indicator minerals were considered to be chromiferous diopsides, chromites garnets, and picro-ilmenites. A brief summary of the typical characteristics for kimberlite indicator minerals is given in Mosig (1980), Dawson and Stephens (1975; 1976) and Stephens and Dawson (1977).

Each size fraction was sorted separately; the minus 300 micron fraction was not examined as it was too fine for reliable results to be obtained.

Sorting commenced on July 7, and was completed on July 11, 1989. To ascertain sorter efficiency, 53% of the samples were checked and 19% were rechecked.

All the grains considered to have possible kimberlitic affinities after visual examination were then submitted for further examination by electron microprobe at the Anglo American Research Laboratories in Johannesburg, South Africa. The selected grains were set in resin on a probe mount and very carefully polished. The very fine of the grains caused considerable size polishing problems. The mount was then placed in an ARL SEMQ fully automated microprobe fitted with nine channels, and subjected to a 10 second analysis at 20 Kv and a sample current of 50 nano-amps. Interal standards were ilmenite, spinel, olivine, enstatite and diopside glasses. The mineral species were all probed routinely for manganese, aluminum, iron, silicon, titanium, calcium, chrome and magnesium. Sodium was also reported for "other mineral" analyses. After sorting, all the separate fractions for each sample were recombined.

RESULTS

A total of 117 samples were examined.

The sorters selected 12 possibly kimberlitic minerals from nine samples. Subsequent microprobe analysis indicated that only 11 grains have kimberlitic affinities; six garnets, four ilmenites and one chromite. The probe results are listed in Table 2 while the chemical analyses are shown in Tables 3 to 6. No diamonds were recovered.

All the samples will be returned to the Geological Services Branch, together with one microprobe mount containing 12 grains. Table 7 lists the sample number and grain locations for the mount.

J.P. Letendre Field Manager Thunder Bay, Ontario January 8, 1990

JPL:it

Distribution:			
MDEM			2
Monopros	Toronto		1
Monopros	Thunder	Bay	1

REFERENCES

- Dawson, J.B. and Stephens, W.E. 1975. Statistical classification of garnets from kimberlites and associated xenoliths. Journal of Geology: 83: 589-607.
- Dawson, J.B. and Stephens, W.E. 1976. Statistical classification of garnets from kimberlites and associated xenoliths-addendum. Journal of Geology: 83: 589-607.
- Mosig, R.W. 1980. Morphology of indicator minerals a guide to proximity of source. <u>IN</u> Glover, J.E. and Groves, D.E. (Eds) 1980. Kimberlites and Diamonds, The Geology Department and Extension Service, University of Western Australia Publication #5, pp 81-87.
- Stephens, W.E. and Dawson, J.B. 1977. Statistical comparisons between pyroxenes from kimberlites and their associated Xenoliths. Journal of Geology: 85: 443-449.

SECTION	SAMPLE NUMBER	2 KG SPLIT	-2.0+0.25mm size fraction from 600g split
CONAWAPA	CON $88-1$ CON $88-2$ CON $88-3$ CON $88-3$ CON $88-10$ CON $88-10$ CON $88-12$ CON $88-12$ CON $88-13$ CON $88-13$ CON $88-14$ CON $88-15$ CON $88-16$ CON $88-16$ CON $88-22$ CON $88-22$ CON $88-23$ CON $88-24$ CON $88-25$ CON $88-25$ CON $88-26$ CON $88-26$ CON $88-27$ CON $88-28$ CON $88-29$ CON $88-30$ CON $88-31$ CON $88-31$ CON $88-31$ CON $88-34$ CON $88-35$	- - - - - - - - - - - - - - - - - - -	x * x * x * x x x x x x x x x x x x x x
HENDAY	HEN $88-1$ HEN $88-2$ HEN $88-3$ HEN $88-4$ HEN $88-4$ HEN $88-6$ HEN $88-6$ HEN $88-7$ HEN $88-7$ HEN $88-7$ HEN $88-10$ HEN $88-10$ HEN $88-10$ HEN $88-10$ HEN $88-25$ HEN $88-25$ HEN $88-26$ HEN $88-26$ HEN $88-30$ HEN $88-32$ HEN $88-32$ HEN $88-34$ HEN $88-36$ HEN $88-36$ HEN $88-40$ HEN $88-40$ HEN $88-46$	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X

TABLE 1

SECTION	SAMPLE NUMBER	2 KG SPLIT	-2.0+0.25mm size fraction from 600g split
LIMESTONE	LMS 88-1 LMS 88-2 LMS 88-3 LMS 88-3 LMS 88-4 LMS 88-5 LMS 88-6 LMS 88-7 LMS 88-7 LMS 88-9 LMS 88-10 LMS 88-10 LMS 88-11 LMS 88-12 LMS 88-12 LMS 88-13 LMS 88-14 LMS 88-15 LMS 88-15 LMS 88-16 LMS 88-17 LMS 88-18 LMS 88-19 LMS 88-20 LMS 88-21 LMS 88-21 LMS 88-23 LMS 88-24 LMS 88-24 LMS 88-24	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X
	LMS 88-25 LMS 88-26 LMS 88-27 LMS 88-29 LMS 88-30 LMS 88-31 LMS 88-31 LMS 88-33 LMS 88-33 LMS 88-34 LMS 88-35 LMS 88-35 LMS 88-37 LMS 88-37 LMS 88-39 LMS 88-40 LMS 88-41 LMS 88-59 LMS 88-61 LMS 88-61 LMS 88-62	- X X X X X X X X X X X X X X X X X X X	x * x x x x x x x x x x x x x x x x x x

SECTION	SAMPLE NUMBER	2 KG SPLIT	-2.0+0.25mm size fraction from 600g split
SUNDANCE	SUN 87-1 SUN 87-2	x x	x x
	SUN 87-3	х	х
	SUN 87-4	х	X
	SUN 87-5	х	х
	SUN 87-6	х	х
	SUN 87-7	х	х
	SUN 87-8	х	х
	SUN 87-9	Х	х
	SUN 87-10	Х	х
	SUN 87-11	Х	х
	SUN 87-12	х	х
	SUN 87-13	X	x
	SUN 87-14	Х	x
	SUN 87-15	-	x *
	SUN 87-16	-	x *
	SUN 87-17	-	x *
	SUN 87-18	-	x *
	SUN 87-19	-	x *
	SUN 87-20	-	x *
	SUN 87-21	-	x *
	SUN 87-22	-	x *
	SUN 87-23	-	x *
	SUN 87-24	-	X *

N.B. * Not listed by Geological Services Branch

TABLE 2

Sample Number		No of rains	Mineral	Kimberlitic Affinities
LMS 88-4	-0.5+0.3mm	1	Garnet	Yes
LMS 88-19	-1.0+0.5mm	1	Garnet	Yes
LMS 88-19	-0.5+0.3mm	1	Garnet	Yes
CON 88-16 CON 88-16 CON 88-16 CON 88-23 CON 88-34	-1.0+0.5mm -0.5+0.3mm -0.5+0.3mm -1.0+0.5mm -0.5+0.3mm	1 1 1 1	non defined Garnet Ilmenite Chromite Ilmenite	No Yes Yes Yes Yes
SUN 87-1	-0.5+0.3mm	1	Garnet	Yes
SUN 87-2	-0.5+0.3mm	1	Ilmenite	Yes
SUN 87-8	-0.5+03.mm	1	Ilmenite	Yes
SUN 87-10	-0.5+0.3mm	1	Garnet	Yes

RESULTS AFTER MICROPROBING

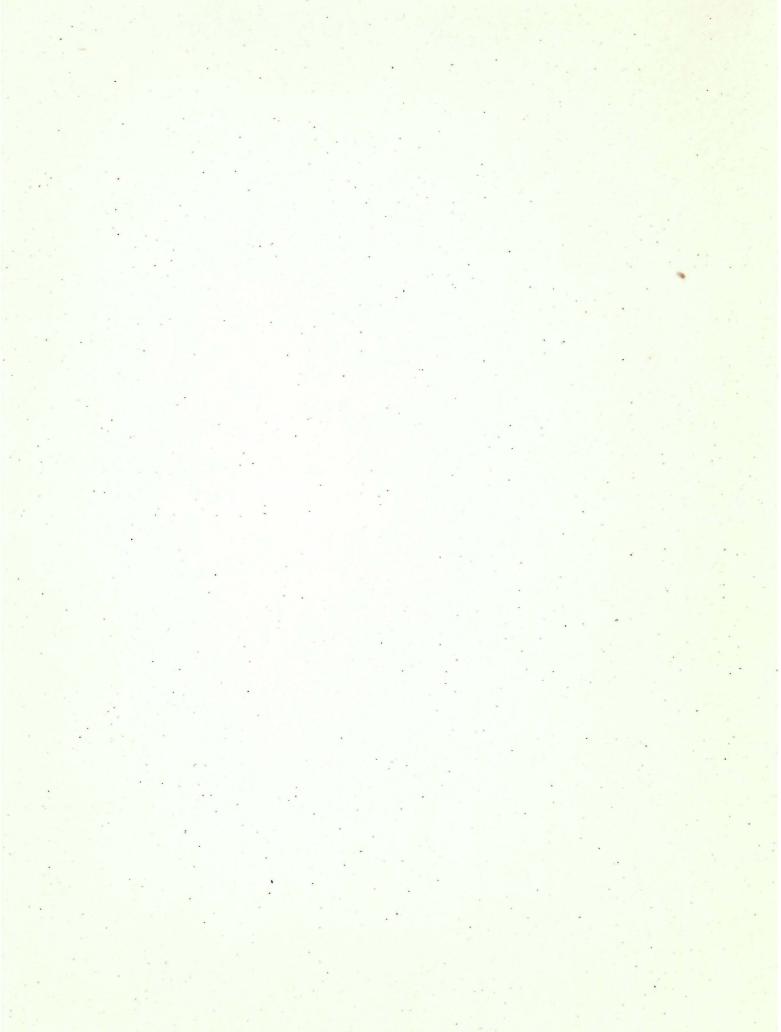
GARN	IET DATA FILE :	M89X679.G1	- CAN89053	3.G						TABL	E : 3	PAGE 1
	SAMPLE NAME	SIZE	SI02	T102	AL203	CR203	FEO	MGO	MNO	CAO	TOTAL	
	ZMS88-4-1	0.3	42.04	0.83	19.05	2.01	8.73	22.55	0.29	4.70	100.20	
2	ZMS88-19-2	0.5	41.54	0.59	19.11	2.54	7.50	23.43	0.17	4.76	99.64	
З	ZMS88-19-3	0.3	39.59	0.26	19.93	0.03	23.36	10.19	0.32	6.17	99.85	
4	CON88-16-5	0.3	40.80	0.41	20.12	5.28	5.53	21.26	0.21	4.67	98.28	
5	SUN87-1-9	0.3	42.43	0.68	18.14	4.60	7.55	20.57	0.30	6.13	100.40	
6	SUN87-10-12	0.3	42.33	0.37	17.95	5.87	6.94	22.26	0.34	5.50	101.56	

.

MENITE DATA FILE	: M89X679	. I 1	- CAN	39053.3	[TABLE	: 4	PAGE	1
SAMPLE NAME	SIZE	5102	T I O 2	AL203	CR203	FEOT	MGO	MNO	CAO	TOTAL	FEO	FE203	CTOTAL		
1 CON88-16-6	0.3	0.00	51.35	0.30	0.74	35.26	10.48	0.41	0.04	98.58	27.10	9.07	99.49		
2 CON88-34-8	0.3	0.02	50.44	0.52	0.27	36.26	11.11	0.26	0.05	98.93	25.41	12.06	100.14		
3 SUN87-2-10	0.3	0.02	53.08	0.72	0.89	31.11	13.45	0.45	0.09	99.81	23.41	8.56	100.67		
SUN87-8-11	0.3	0.05	48.01	0.54	0.59	34.76	10.56	0.20	0.03	94.84	24.08	11.87	96.03		

CHROMITE DATA FILE :	M89X679	.S1	- CAN 8	39053.5	5							TABLE	: 5	PAGE	1
SAMPLE NAME	SIZE	S102	T I O 2	AL203	CR203	FEOI	MGO	MNO	CAO	TOTAL	FEO	FE203	CTOTAL		
1 CON88-23-7	G.5	0.00	0.06	12.41	56.07	21.88	10.37	0.72	0.03	101.54	18.06	4.25	101.97		

OTHER MINERALS DATA	FILE : M	89X579	.01	- CAN	39053.0)						TABLE : 6	PAGE	1
SAMPLE NAME	SIZE	SI02	T102	AL203	CR203	FEO	MGO	MNO	CAO	NA20	TOTAL			
1 CON88-16-4	0.5	0.02	2.77	20.26	24.10	31.62	13.68	0.17	0.05	0.00	92.67			


TABLE 7

Mount code for grain analysis by Microprobe

NOTE: The top of the mount is marked with an X.

Grain positions are sequentially numbered in the first row from top right to top left; in the second row, the numbering runs from left to right. The grain in the upper right corner was placed there by error and is not in any way related to this report.

i.e.						х							Disregard			
	10	9	8	7	6	5		4	3	2		1				
			•							•						
	11	12														
	•	•														
	Grain # Sa									M	Mineral					
	1					LMS 88-4						Garnet				
					LMS	88-	19			G	Garnet					
2 3 4 5					LMS 88-19						Garnet					
	4	1			CON 88-16						Non defined					
					CON 88-16 CON 88-16						Garnet Ilmenite					
6 7					CON				Chromite							
8					CON			_	Ilmenite							
9					SUN				Garnet							
	10					SUN 87-2						Ilmenite				
	11					SUN 87-8 SUN 87-10						Ilmenite Garnet				
	12	2			SUN	87-	10			G	ar	ne	et			
a			6						1053							
Consignor's reference Laboratory reference								189/6	/053							
Lab0.	Lacor	у те	rere	nce	5		MC	0 1 6 1	13							
		mou				1										
Number of grains						12										

